

Memory loss and Dementia in HIV

• Does HIV infection accelerate onset of memory loss at advanced ages?

- What do we need to determine in planning this study?
 - Study design?
 - o Study participants?
 - Endpoints? Measures of memory loss?
 - Covariates / possible confounders to collect?
 - Statistical Analysis Plan (SAP)
- Who should be involved in the process of planning a study?

Memory loss and Dementia in HIV

• Does HIV infection accelerate onset of memory loss at advanced ages?

- \circ We want to recruit a sample of HIV+ & HIV- individuals between ages of 55 and 65 and test their memory
 - Primary endpoint: Memory as a continuous measure where lower values indicate worse memory
 - Secondary endpoint: Self-assessed memory impairment ("Do you feel your memory today is worse than three years ago?")
- Confounders
 - Age, medication use & duration, age at HIV onset?
- Statistical Analysis Plan?
- How many participants do you need to see a meaningful difference (if one exists)?

Sample Size Calculations

- Before beginning a study you want to determine how many subjects you will need to enroll
 - To see the desired / expected effect
 - To have a high probability that that effect is statistically significant (assuming the effect exists)
- Power calculations can be used to:
 - Determine the sample size needed
 - $\,\circ\,$ Determine the power given a fixed or maximum sample size
 - Determine the detectable effect size given a sample size and power

So, do we really need to do this?

• Yes!!!!

• If a sample size isn't large enough,

 we may conclude a null result (even if there truly is an effect) due to a lack of statistical power (type II error)

• If sample size is too large,

• we have wasted valuable resources (time, \$, etc.)

Our decisions & mistakes

	Rec	ality!
	H ₀ is true There is not a difference	H ₀ is False There is a difference
Conclusion Do Not Reject There is not a difference	tH ₀ Correct	Type II Error
Reject H ₀ There is a different	Type I Error	Correct ©
P(type I erro P(type II error) P(rejecti r	or) = P(rejecting $H_0 H_0$ is t = P(not rejecting $H_0 H_0$ i ng $H_0 H_0$ is false) = 1-β = POV	true)= α is false)= β NER

• What you need

- Estimate of expected effect size
- Estimate of expected variability
- Significance level
 - \circ Typically $\alpha = 0.05$
 - Take into account # of endpoints and tests
- Power Probability of finding a significant effect given that effect exists

SS Calculation: Effect Size

- Depends on analysis to be performed
 Difference in means? OR? RR?
- Clinically Meaningful / Relevant Difference
- Realistic, but reasonable
- How to get an estimate
 - Previous literature
 - Pilot Study
 - Clinically Meaningful
 - Increments of Standard Error

SS Calculation: Variability

- Usually measured as Standard Deviation or proportion expected in each group
- Clinically Meaningful / Relevant Difference
- Realistic, but reasonable
- How to get an estimate
 - Previous literature
 - Pilot Study
 - Tricks?
 - (max min) / 4
 - Err on side of over-estimate

Does HIV infection accelerate onset of memory loss at advanced ages? Compare HIV+ and HIV- individuals on a continuous, normally-distributed memory score 2-sample t-test We find previous literature using this measure with HIV- individuals and they reported, for 55-65 years olds, a mean of 20 with a standard deviation of 5 We want to see a difference of 1 SD (5 units) between the groups How many subjects do we need to recruit in each group to see a difference of 5 units?

R Programming

• Free Software program available to download

• <u>www.r-project.org</u>

 \circ I will show you some very simple code for straight-forward sample size calculations

• Many more examples can be found just a google away!

Sample Size in R	
<pre>> power.t.test(delta=2, sd=5, power=0.8, sig.level=0.05)</pre>	
What do we have to change?	
<pre>> power.t.test(delta=2, sd=5, power=0.9, sig.level=0.05)</pre>	

Memory loss and Dementia in HIV

• Does HIV infection accelerate onset of memory loss at advanced ages?

- Compare HIV+ and HIV- individuals on a binary variable
- Chi-Square test, our effect measure is OR (case-control study)
- $^\circ\,$ We find previous literature using this measure with HIV- individuals and 15% reported having experienced worse memory than 3 years earlier.
- \circ We think that HIV+ people will have 2xs the odds of reporting worse memory
- How many subjects do we need to recruit in each group to see an odds ratio = 2?

Risk (p) vs. Odds (o)

$$o = \frac{p}{1-p} \qquad p = \frac{o}{1+o} \qquad odds \ ratio (OR) = \frac{o_1}{o_2} = \frac{p_1/(1-p_1)}{p_2/(1-p_2)}$$
We find previous literature using this measure with HIV-
individuals and 15% reported having experienced
worse memory than 3 years earlier.
In this case 15% is a proportion or 'risk' and we need to
calculate an OR
$$p_1 = \frac{OR * p_2}{1-p_2 + OR * p_2}$$

For simple R sample size calculations we need $p_1 \& p_2$

We have p_2 (15%) & OR, need to estimate p_1

Risk (p) vs. Odds (o)

$$e = \frac{p}{1-p} \qquad p = \frac{o}{1+o} \qquad OR = 2.0 = \frac{p_{HIV+}}{0.15/1-0.15}$$
We find previous literature using this measure with HIV-
individuals and 15% reported having experienced
worse memory than 3 years earlier.
In this case 15% is a proportion or 'risk' and we need to
calculate an OR

For simple R sample size calculations we need $\ensuremath{p_1\ensuremath{\&\ensuremath{p_2\ensuremath{}}}$

We have p_2 (15%) & OR, need to estimate p_1

Sample Size in R	
<pre>> power.prop.test(p1=0.26, p2=0.15, power=0.8)</pre>	
What do we have to change?	

Г

Risk (p) vs. Odds (o)

$$e = \frac{p}{1-p} \qquad p = \frac{o}{1+o} \qquad OR = 2.0 = \frac{p_{HIV+}}{0.35} + \frac{1-p_{HIV+}}{0.35}$$
We find previous literature using this measure with HIV-
individuals and 15% reported having experienced
worse memory than 3 years earlier.
In this case 15% is a proportion or 'risk' and we need to
calculate an OR
For simple R sample size calculations we need p_1 & p_2
We have p_2 (15%) & OR, need to estimate p_1

<pre>> power.prop.test(p1=0.26, p2=0.15, power=0.8) What do we have to change? > power.prop.test(p1=0.52, p2=0.35, power=0.8)</pre>	Sample Size in R	
What do we have to change? > power.prop.test(p1=0.52, p2=0.35, power=0.8)	<pre>> power.prop.test(p1=0.26, p2=0.15, power=0.8)</pre>	
<pre>> power.prop.test(p1=0.52, p2=0.35, power=0.8)</pre>	What do we have to change?	
	<pre>> power.prop.test(p1=0.52, p2=0.35, power=0.8)</pre>	

 Not uncommon grant. Vary effect size, Do NOT vary sign 	e Siz to present power and hificance le	e pr multiple p d variabilit evel!	Descipilities	ntat sin a powe	ion er/sample	size section of a
	HIV+ (p)	HIV- (p)	OR	Power	n per group	
	0.26	0.15	2.0	80%	211	
	0.26 0.26	0.15 0.15	2.0 2.0	80% 90%	211 281	
	0.26 0.26 0.35	0.15 0.15 0.15	2.0 2.0 3.0	80% 90% 80%	211 281 73	

Sample Size: Notes

- $\circ\,$ Calculation (once you have the inputs) is relatively simple, but estimation of ES can be difficult
- Important to be conservative but maintain reason when estimating parameters
- $\circ\,$ Small changes in some parameters may have a large effect on the power
- \circ In the end, it's often a balancing act
- Take into account the # of tests and endpoints you have.
- $\circ\,$ Adjust alpha (sig.level in R) to control for multiple comparisons

Sample Size: Common PitFalls

• Drop outs

- Secondary Endpoints
- Multiplicity
- Recognizing Futility
- Choosing the wrong endpoint
- \circ Massaging the parameters to get 80% power will not help you in the end!!!

Sample Size: Notes

- $\circ\,$ Calculation (once you have the inputs) is relatively simple, but estimation of ES can be difficult
- Important to be conservative but maintain reason when estimating parameters
- $\circ\,$ Small changes in some parameters may have a large effect on the power
- $\circ\,$ In the end, it's often a balancing act

 Perform sample size c 	alculations during the design phase of your research
• Ensure that you will ha	ave enough power to detect a difference if one exists
 Absence of evidence (power may be too lo 	of an effect is not the same as evidence of absence of an effect w)
Know when to consul	t a statistician!
To consult the stat ask him to cond	istician after an experiment is finished is often merely to uct a post-mortem examination. He can perhaps say what the experiment died of.

