

Regression – what is it good for?

- Explore Associations
 - Between outcomes and exposures
 - Between outcomes and exposures adjusting for confounders
 - Hypothesis Testing
- Prediction
 - Generate models to predict an outcome or event
 - Select variables to be included in prediction models
 - Generate "rules" for disease prediction

It's the solution to all our problems in medical research

Regression – what is it good for?

Explore Associations

- Between outcomes and exposures
- Between outcomes and exposures adjusting for confounders

Hypothesis Testing

• Prediction

- Generate models to predict an outcome or event
- Select variables to be included in prediction models
- Generate "rules" for disease prediction

Results from linear regression

 $\beta_1 = 0.81$, SE(β_1) = 0.11, p = 2x10⁻¹²

For each addition person in a household, on aver the score on a memory test is 0.81 units higher.

This association is statistically significant $(p=2x10^{-12})$

 $R^2 = 0.048$

4.8% of the variance in memory scores can be explained by size of household

score = 38.7 + 0.81 * size

model1 <- lm(full\$score ~ full\$size_hh)
summary(model1)</pre> call: lm(formula = full\$score ~ full\$size_hh) Residuals: Min 1Q Median 3Q Max -28.2526 -5.6335 0.1679 5.2436 26.3759 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 38.7303 1.3985 27.694 < 2e-16 *** fullSsize_hh 0.8096 0.1137 7.121 2.04e-12 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.276 on 998 degrees of freedom Kastadar standard et 0.0.42836, Adjusted R-squared: 0.0474
F-statistic: 50.71 on 1 and 998 DF, p-value: 2.044e-12

	Simple	Vedel	Modelw	ith ago	
	Beta (SE)	n-value	Beta (SE)	nin age n-value	
Size of household	0.81 (0.11)	2x10 ⁻¹²	0.41 (0.12)	0.0005	
Age	. ,		-0.38 (0.05)	4x10 ⁻¹⁶	
Adjusted R ²	0.047		0.108		
Questions to ask: (1) Is size ass (2) Has the a	ociated with mer association betwe	nory score wher en household siz	adjusting for age? ze and memory sco	o pre changed?	

Addii	ng Se	Х				
	Simple Model		Model with age		Model with age & sex	
	Beta (SE)	p-value	Beta (SE)	p-value	Beta (SE)	p-value
Size of household	0.81 (0.11)	2x10 ⁻¹²	0.41 (0.12)	0.0005	0.42 (0.12)	0.0004
Age			-0.38 (0.05)	4x10 ⁻¹⁶	-0.38 (0.05)	3x10 ⁻¹⁶
Male sex					1.29 (0.52)	0.014
Adjusted R ²	0.047		0.108		0.114	
Questions to a (1) Is s (2) Ha	sk: ize associated s the associati	with memo on betweer	n household siz	adjusting for e and memc	age & sex? pry score chang	jed?

Addi	ng	Cli	nic
	\mathbf{O}		

	Simple Model		Model w	ith age	Model with age & clinic	
	Beta (SE)	p-value	Beta (SE)	p-value	Beta (SE)	p-value
Size of household	0.81 (0.11)	2x10 ⁻¹²	0.41 (0.12)	0.0005	0.48 (0.12)	0.00007
Age			-0.38 (0.05)	4x10 ⁻¹⁶	-0.32 (0.05)	4x10 ⁻¹¹
Clinic 1					1.0	
Clinic 2					-1.29 (0.69)	0.061
Clinic 3					-2.38 (0.64)	0.0002
Adjusted R ²	0.047		0.108		0.118	
Questions to a (1) Is s (2) Ha	ask: size associated as the associati	with memo	ory score when n household siz	adjusting for e and memo	age & clinic? Dry score chang	ged?

Choosing Covariates

- Use knowledge about your outcome, exposure and research question to help choose covariates to look at. *A priori* knowledge!
- What about automatic selection procedures? (backwards, forwards, stepwise)
 - Based purely on 'the numbers' (empirical process)
 - Usually only look at significance
 - NOT useful in hypothesis driven testing

• Do not:

- $\circ\,$ Test all available variables just because you have them
- Include highly correlated variables (e.g. height & BMI, right hand strength & left hand strength)

Regression for Prediction

For Association

- Typically interested in single (or few) factors that are associated with outcome
- Find other variables that confound that association
- Variables included in the model depending on if they play a role in primary association of interest

For Prediction

- Interested in the 'best set' of variables for a model
- Include all variables that improve predictive accuracy
- Less concerned with p-values of specific variables (although p-values are often used to parse down lists of variables)

Predictive Accuracy

- Discrimination: How well the model separates out 'cases' from 'controls'
 - Receiver Operating Characteristic Curve (ROC Curve)
 - Area Under the ROC Curve (AUC or c-statistic)
- Calibration: How well the predicted outcome matches the observed outcome
 - Hosmer-Lemeshow Chi-Square Goodness-of-fit Statistic
- Re-classification: How well a new model to improves on an old model
 - Net Reclassification Index (NRI)
 - Integrated Discrimination Improvement (IDI)
 - Re-classification Index

	Model 1		Model 2		Model 3		Model 4	
	Beta (SE)	p-value	Beta (SE)	p-value	Beta (SE)	p-value	Beta (SE)	p-value
Age	0.11 (0.02)	10-13	0.11 (0.02)	10 ⁻¹³	0.12 (0.02)	10-12	0.11 (0.02)	10-10
Sex (male)			-0.15 (0.19)	0.41	-0.18 (0.19)	0.36	-0.17 (0.19)	0.357
HIV_dur					0.16 (0.03)	10-10	0.16 (0.03)	10-10
HIV trt							-0.46 (0.20)	0.02
Clinic 2							0.10 (0.28)	0.72
Clinic 3							0.37 (0.25)	0.14
c - stat	0.669		0.671		0.751		0.760	

Regression for Prediction: Overfitting

- $\circ\,$ When we assess predicative accuracy on the same dataset we developed the model in we risk overfitting
- "Overfitting"
 - · Imagine taking a mold of your feet and creating the perfect shoe from that mold
 - The shoe will fit great on you, best shoe you ever had
 - How would it fit your neighbor?
- Preventing overfitting
 - Shoe Sizes!
 - Might lose some accuracy, but it is an algorithm that applies to a larger population
- Ideally we have 2 datasets
 - We develop the model on our data (measure all our feet) [training set]
 - Then test it on another dataset (other people's feet) [testing set]

Regression for Prediction: Overfitting

Ideally we have 2 datasets

- We develop the model on our data (measure all our feet) [training set]
- Then test it on another dataset (other people's feet) [testing set]

Can also do cross-validation

- Choose 10% of data and set aside
- "train" the model in the remaining 90%
- $\circ~$ "test" the model in the 10% left out
- $\circ\,$ Repeat 10xs and report the distribution of the results (mean, SD)
- Note: This is 10-fold cross-validation
- $\circ\,$ 10 is rather arbitrary do what you sample size allows, make sure there are enough events/non-events in each set

Regression Summary

For Association

- Typically interested in single (or few) factors that are associated with outcome
- Find other variables that confound that association
- Variables included in the model depending on if they play a role in primary association of interest

For Prediction

- Interested in the 'best set' of variables for a model
- Include all variables that improve predictive accuracy
- Less concerned with p-values of specific variables (although p-values are often used to parse down lists of variables)
- Be conscious of overfitting: always test in outside data

