

Ideal World

- All datasets would be complete
 - Everyone will have filled in all the questions correctly
 - Everyone will have sent in all their questionnaires
 - \circ All blood samples will make their way to the lab in time
 - All genotype data will have passed QC processes
 - \circ No one will have a diagnosis date before their birth date
 - $\,\circ\,$ No men would be listed as having been pregnant
 - \circ All researchers would have their own biostatistician to work with

Missing Data De	finitions
Missing Completely At Random (MCAR)	Pr(M X _{miss} , X _{obs})=Pr(M)
Missing At Random (MAR)	$Pr(\mathbf{M} \mid X_{miss}, X_{obs}) = Pr(\mathbf{M} \mid \mathbf{X}_{obs})$
Missing Not At Random (MNAR) a.k.a. "non-ignorable" or "informative"	$Pr(\mathbf{M} \mid \mathbf{X}_{miss}, \mathbf{X}_{obs}) = Pr(\mathbf{M} \mid \mathbf{X}_{miss}, \mathbf{X}_{obs})$
Where M = missing indicat X _{miss} = missing value X _{obs} = observed va	

Missing at Random (MAR)

• $P(M=1 | X_{obs}, X_{miss}) = P(M=1 | X_{obs})$

- Probability that X₁ is missing is related to an OBSERVED value of another covariate X₂
- $\,\circ\,$ After adjusting for the observed value $X_{2^{\prime}}$ X_{1} is not associated with M

Age/Income

- $\circ\,$ Older age groups more likely to answer income question than younger age groups
- $\,\circ\,$ Older age groups tend to make higher incomes
- So overall average is inflated (if only look at non-missing)
- Within age group. income level not related to missingness
 - So can control for age group to deal with missingness

Missing Not at Random (MNAR)

 $\circ \mathsf{P}(\mathsf{M}{=}1 \mid X_{obs'} \mid X_{miss}) = \mathsf{P}(\mathsf{M}{=}1 \mid X_{obs'} \mid X_{miss})$

 \circ Probability that X is missing is related to an unknown/missing value

- Heavy drug users are less likely to report their drug use than light users
- So heavy users will have more missing values and
- Therefore overall average will be deflated
- So probability of missing drug use is related to higher frequencies of use

Missing Data

- Type of missing
 - MCAR Missing Completely at Random
 - MAR Missing at Random
 - $\circ\,$ MNAR Missing Not at Random
- \circ There may be different types of missingness in one dataset
- No one method is perfect
- \circ There is no one method that fits every situation
- So now what?

Method	Advantages	Disadvantages
Complete case	Easy	Generally biased if data are not MCAR*
		Inefficient
	Easy for one variable	Biased
Missing indicator	A little more efficient	Difficult for more than one variable
	Unbiased if data are MAR and	Estimating standard
Weighted	missingness model correctly specified Point estimation easy	errors can be difficult
	Can be quite efficient**	Can be inefficient**
	Easy	Generally biased
Single imputation	Can be unbiased in important situations (e.g. under the null)	Estimating standard errors can be difficult
	Can be quite efficient**	Can be inefficient**
Maximum	Unbiased if missingness model correctly specified (even for MNAR)	Very difficult to
likelihood	Can be more efficient	implement

Method	Advantages	Disadvantages	
Complete case	Easy	Generally biased if data are not MCAR*	
	-	Inefficient	
	Easy for one variable	Biased	
	A little more efficient	Difficult for more than one variable	
	Unbiased if data are MAR and	Estimating standard	
	missingness model correctly specified	errors can be difficult	
	Point estimation easy Can be quite efficient ^{**}	Can be inefficient**	
	Easy	Generally biased	
	Can be unbiased in important	Estimating standard	
	situations (e.g. under the null)	errors can be difficult	
	Can be quite efficient**	Can be inefficient**	
Maximum	Unbiased if missingness model correctly specified (even for MNAR)	Very difficult to	
	Can be more efficient	implement	

OCAR - Missingness unrelated to any known or unknown variable Unbiased Loss of efficiency, especially in cases of large missingness MAR - Missing related to a measured variable If related *only* to disease and/or exposure - as long as missingness is multiplicative then unbiased Lose efficiency in all cases MNAR - Missing related to some unmeasured/unknown or a measured but missing variable Complete Case analysis will produce biased results!

Dementia and Memory Loss in HIV

• Ideal World: I created this dataset with n=1000 people (reality)

- Real World: I used this 'reality' dataset to make 3 'real' datasets with missingness
 - MCAR missingness is not associated with anything
 - MAR missingness is associated with age
 - MNAR missingness is associated with an unknown variable

Collect information on

- Score on memory test (continuous: higher is better)
- Age (continuous)
- Clinic
- Size of household (continuous)
- Model: Linear Regression
 - Memory Score = size_hh + age + clinic

Reality (n=1	<pre>> model1 <- lm(full\$score ~ full\$size_hh + full\$age + full\$clinicf) > summary(model1)</pre>
	call: lm(formula = full\$score ~ full\$size_hh + full\$age + full\$clinicf)
	Residuals: Min 1Q Median 3Q Max -26.6101 -5.4566 -0.1408 5.1860 22.4898
	Coefficients: Estimate Std. Error t value Pr(> t)
	(Intercept)62.832613.5747717.577< 2e-16***full\$size_hh0.477180.120413.9637.93e-05***full\$age-0.324260.04877-6.6494.87e-11***full\$clinicfclinic 2-1.296290.69192-1.8730.061297.
	full\$clinicfclinic 3 -2.38112 0.63911 -3.726 0.000206 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
	Residual standard error: 7.963 on 995 degrees of freedom Multiple R-squared: 0.1217, Adjusted R-squared: 0.1182 F-statistic: 34.46 on 4 and 995 DF, p-value: < 2.2e-16

Complete Case analysis

Reality (I	า=1000)	MC	AR	MA	AR	MN	AR
Beta (SE)	p-value	Beta (SE)	p-value	Beta (SE)	p-value	Beta (SE)	p-value
0.48 (0.12)	10 ⁻⁵						
-0.32 (0.05)	10 ⁻¹¹						
1.0							
-1.29 (0.69)	0.06						
-2.38 (0.64)	0.0002						
	Beta (SE) 0.48 (0.12) -0.32 (0.05) 1.0 -1.29 (0.69)	0.48 (0.12) 10 ⁻⁵ -0.32 (0.05) 10 ⁻¹¹ 1.0 -1.29 (0.69)	Beta (SE) p-value Beta (SE) 0.48 (0.12) 10 ⁻⁵ - -0.32 (0.05) 10 ⁻¹¹ - 1.0 - - -1.29 (0.69) 0.06 -	Beta (SE) p-value Beta (SE) p-value 0.48 (0.12) 10 ⁻⁵ - - -0.32 (0.05) 10 ⁻¹¹ - - 1.0 - - - -1.29 (0.69) 0.06 - -	Beta (SE) p-value Beta (SE) p-value Beta (SE) 0.48 (0.12) 10 ⁻⁵ - -	Beta (SE) p-value Beta (SE) p-value Beta (SE) p-value 0.48 (0.12) 10 ⁻⁵ - -	Beta (SE) p-value Beta (SE) p-value Beta (SE) p-value Beta (SE) 0.48 (0.12) 10 ⁻⁵ - <

MCAR (n=55	3)
<pre># Missing - size_hh (351) - Age (148) - Clinic (0) # missing at least 1 variable = 447 (45%) # with complete data = 553 (55%)</pre>	<pre>5) / modelMCAR <- lm(MCAR\$score ~ MCAR\$size_hh + MCAR\$age + MCAR\$clinicf) > summary(modelMCAR) Call: lm(formula = MCAR\$score ~ MCAR\$size_hh + MCAR\$age + MCAR\$clinicf) Residuals: Min</pre>

С	omp	olete	Cas	e ar	alysi	S		
	Reality (n=1000)	MCAR ((n=553)	M	AR	MN	IAR
	Beta (SE)	p-value	Beta (SE)	p-value	Beta (SE)	p-value	Beta (SE)	p-value
Size_hh	0.48 (0.12)	10 ⁻⁵	0.47 (0.17)	0.005				
Age	-0.32 (0.05)	10-11	-0.30 (0.07)	10-6				
Clinic 1	1.0		1.0					
Clinic 2	-1.29 (0.69)	0.06	-1.12 (0.96)	0.24				
Clinic 3	-2.38 (0.64)	0.0002	-2.64 (0.86)	0.002				
		- SEs	e: as are pretty are larger alues less sig		ality			

MAP(n-638)	
MAR (n=638)	<pre>> modelMAR <- lm(MAR\$score ~ MAR\$size_hh + MAR\$age + MAR\$clinicf) > summary(modelMAR)</pre>
	call: lm(formula = MAR\$score ~ MAR\$size_hh + MAR\$age + MAR\$clinicf)
# Missing - size_hh (362)	Residuals: Min 1Q Median 3Q Max -27.273 -5.691 -0.031 5.340 22.202
# with complete data = 638 (64%)	Coefficients: Estimate Std. Error t value Pr(> t)
	(Intercept)63.648564.5808713.894< 2e-16***MAR\$size_hh0.524470.154793.3880.000747***MAR\$age-0.351220.06327-5.5514.18e-08***
	MAR\$age -0.55122 0.00527 -5.551 4.182-08 MAR MAR\$clinicfclinic 2 -1.51119 0.89527 -1.688 0.091907 . MAR\$clinicfclinic 3 -1.86610 0.83169 -2.244 0.025193 *
	 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
	Residual standard error: 8.2 on 633 degrees of freedom (362 observations deleted due to missingness) Multiple R-squared: 0.1247, Adjusted R-squared: 0.1192
	F-statistic: 22.55 on 4 and 633 DF, p-value: < 2.2e-16

С	omp	olete	Cas	e ar	nalysi	S		
	Reality (n=1000)	MCAR ((n=553)	MAR (r	า=638)	MN	IAR
	Beta (SE)	p-value	Beta (SE)	p-value	Beta (SE)	p-value	Beta (SE)	p-value
Size_hh	0.48 (0.12)	10 ⁻⁵	0.47 (0.17)	0.005	0.53 (0.15)	0.0007		
Age	-0.32 (0.05)	10-11	-0.30 (0.07)	10-6	-0.35 (0.06)	10-8		
Clinic 1	1.0		1.0		1.0			
Clinic 2	-1.29 (0.69)	0.06	-1.12 (0.96)	0.24	-1.51 (0.90)	0.09		
Clinic 3	-2.38 (0.64)	0.0002	-2.64 (0.86)	0.002	-1.87 (0.83)	0.03		
		- *mis help - SEs a	as are pretty ssingness is a	ssociated v e bias intro	to reality* vith age, so I duced by m	2	ng for age w	le

MNAR (n=890) # Missing - size_hh (110) # with complete data = 890(89%)	<pre>> modelMNAR <- lm(MCAR\$score ~ MNAR\$size_hh + MNAR\$age + MNAR\$clinicf) > summary(modelMNAR) call: lm(formula = MCAR\$score ~ MNAR\$size_hh + MNAR\$age + MNAR\$clinicf) Residuals: Min 1Q Median 3Q Max -26.4587 -5.5548 -0.0569 5.2132 23.1123 Coefficients:</pre>
	Residual standard error: 7.922 on 885 degrees of freedom (110 observations deleted due to missingness) Multiple R-squared: 0.1193, Adjusted R-squared: 0.1153 F-statistic: 29.97 on 4 and 885 DF, p-value: < 2.2e-16

Complete Case analysis

	Reality (n=1000)	MCAR (n=553)	MAR (r	า=638)	MNAR ((n=890)
	Beta (SE)	p-value	Beta (SE)	p-value	Beta (SE)	p-value	Beta (SE)	p-value
Size_hh	0.48 (0.12)	10-5	0.47 (0.17)	0.005	0.53 (0.15)	0.0007	0.31 (0.13)	0.01
Age	-0.32 (0.05)	10-11	-0.30 (0.07)	10-6	-0.35 (0.06)	10-8	-0.36 (0.05)	10 ⁻¹²
Clinic 1	1.0		1.0		1.0		1.0	
Clinic 2	-1.29 (0.69)	0.06	-1.12 (0.96)	0.24	-1.51 (0.90)	0.09	-1.50 (0.73)	0.04
Clinic 3	-2.38 (0.64)	0.0002	-2.64 (0.86)	0.002	-1.87 (0.83)	0.03	-2.30 (0.67)	0.0007
			Betas arSEs are s	e biased fo imilar beca	lease amou r size_hh use we are cant for biase	only missing	g ~ 10% of th	e data

Method	Advantages	Disadvantages	
	Easy	Generally blased if data are not MCAR Inefficient	
Missing indicator	Easy for one categorical variable A little more efficient	Biased Difficult for more than one variable	
	Unblased if data are MAR and missingness model correctly specified Point estimation easy Can be guite efficient"	Estimating standard errors can be difficult Can be inefficient?	
Single imputation	Easy Can be unblased in important situations (e.g. under the null) Can be quite efficient."	Generally blased Estimating standard errors can be difficult Can be inefficient	
Maximum likelihood	Unblased if missingness model correctly specified (even for MNAR) Can be more efficient	Very difficult to Implement	

Indicator Method

	Reality (n=1000)		MAR (r Comple		MAR (n=1000)	
	Beta (SE)	p-value	Beta (SE)	p-value	Beta (SE)	p-value
Size_hh	0.48 (0.12)	10 ⁻⁵	0.53 (0.13)	0.00007	0.46 (0.12)	0.0001
Age	-0.32 (0.05)	10 ⁻¹¹	-0.30 (0.06)	10-6	-0.37 (0.05)	10 ⁻¹⁴
Clinic 1	1.0		1.0		1.0	
Clinic 2	-1.29 (0.69)	0.06	-1.53 (0.84)	0.07	-1.71 (0.83)	0.04
Clinic 3	-2.38 (0.64)	0.0002	-2.33 (0.68)	0.001	-2.08 (0.67)	0.002
					-0.45 (0.80)	0.576

Notice:

- Beta for size_hh is biased when complete case is used

- Including all n=1000 with indicator for missing clinic helps alleviate the bias, but only because it is MAR associated with age (observed)

- MNAR would be biased even with indicator

Method	Advantages	Disadvantages
	Easy	Generally blased if data are not MCAR Inefficient
Missing indicator	Easy for one variable A little more efficient	Blased Difficult for more than one variable
Weighted	Unbiased if data are MAR and missingness model correctly specified Point estimation easy Can be quite efficient ^{**}	Estimating standard errors can be difficult Can be inefficient"
Single imputation	Easy Can be unbiased in Important situations (e.g. under the null) Can be quite efficient"	Cenerally blased Estimating standard errors can be difficult Can be inefficient
Maximum likelihood	Unblased If missingness model correctly specified (even for MNAR) Can be more efficient	Very difficult to implement

Method	Advantages	Disadvantages
Complete case	Easy	Generally biased if data are not MCAR [*]
		Inefficient
	Easy for one variable	Biased
	A little more efficient	Difficult for more than one variable
	Unbiased if data are MAR and	Estimating standard
	missingness model correctly specified	errors can be difficult
	Point estimation easy	Can be inefficient**
	Can be quite efficient**	
	Easy	Generally biased
Single imputation	Can be unbiased in important situations (e.g. under the null)	Estimating standard errors can be difficult
	Can be quite efficient**	Can be inefficient**
Maximum likelihood	Unbiased if missingness model correctly specified (even for MNAR)	Very difficult to implement
IKellilood	Can be more efficient	Implement

	1	viun	ιρic		outati			
	С)bserved I	Data			Complete asets		Results
1 2 3 4 5 6 7 8 9 10	1 1 0 1 1 1		NA NA 1.800 1.091 NA 1.790 0.548	Impute Multiple times	$ \begin{array}{ccccccc} d & \times 1 & \times 2 \\ 1 & 0 & 1.147 & 1.052 \\ 2 & 1 & -0.101 & 0.108 \\ 3 & 1 & 0.308 & 0.708 \\ 6 & 1 & 0.267 & 5.786 \\ 5 & 1 & -1.290 & 1.800 \\ 6 & 1 & 0.662 & 1.091 \\ 7 & 1 & 0.666 & 0.886 \\ 8 & 0 & -0.099 & 1.790 \\ 9 & 0 & 0.850 & 0.548 \\ 10 & 0 & 0.352 & .717 \\ c & \times 1 & \times 2 \\ 1 & 0 & 1.147 & 2.171 \\ 2 & 1 & -0.101 & 0.108 \\ 3 & 1 & 0.308 & 0.565 \\ 4 & 0 & 0.267 & 0.810 \\ 5 & 1 & -1.290 & 1.800 \\ 6 & 1 & 0.666 & 0.766 \\ 8 & 0 & -0.099 & 1.790 \\ 9 & 0 & 0.850 & 0.548 \\ 10 & 0 & 0.352 & .717 \\ \end{array} $	$\begin{array}{ccccccc} d & x1 & x2 \\ 1 & 0 & 1.47 & 0.073 \\ 2 & 1 & -0.101 & 0.108 \\ 3 & 1 & 0.308 & 0.366 \\ 4 & 0 & 0.267 & 0.980 \\ 5 & 1 & -1.200 & 1.800 \\ 6 & 1 & 0.662 & 1.091 \\ 7 & 1 & 0.686 & 0.432 \\ 8 & 0 & -0.999 & 1.730 \\ 9 & 0 & 0.850 & 0.548 \\ 10 & 0 & 0.335 & 2.717 \\ \hline d & x1 & x2 \\ 1 & 0 & 1.147 & 0.171 \\ 2 & 1 & -0.101 & 0.108 \\ 3 & 1 & 0.308 & 0.567 \\ 4 & 0 & 0.267 & 1.220 \\ 5 & 1 & -1.290 & 1.800 \\ 6 & 1 & 0.662 & 1.091 \\ 7 & 1 & 0.666 & 3.002 \\ 8 & 0 & -0.099 & 1.790 \\ 9 & 0 & 0.850 & 0.548 \\ 10 & 0 & 0.557 \\ 4 & 0 & 0.257 & 0.528 \\ \end{array}$	Analyse Multiple times	Analyze each imputed data set as if completed data were observed; appropriately summarize results across data sets

Caveat

"The idea of imputation is both seductive and dangerous. It is seductive because it can lull the user into the pleasurable state of believing the data are complete after all, and it is dangerous because it lumps together situations where the problem is sufficiently minor that it can be legitimately handled in this way and situations where standard estimators applied to the real and imputed data have substantial biases."

Little and Rubin pg 59

Conditional Mean Imputation

- How: Let's say X₁ has missing values
 - Using complete data model: $X_1 = X_2 + X_3 + ... + X_k$ (do NOT outcome!)
 - $\,\circ\,$ Using that model, 'predict' all the missing X_1s
 - Repeat for all possible combinations of missingness
- Advantages:

$$X_{i3}^{(imputed)} = \hat{\alpha} + \hat{\beta}_1 X_{i1} + \hat{\beta}_2 X_{i2}$$

- Maintains efficiency (use all data)
- $\circ~$ Good for MCAR and MAR
- Disadvantages:
 - Not easy, especially when complicated patterns of missingness

Important note: this is the one imputation approach where one $\ensuremath{\mathsf{CANNOT}}$ use outcome to predict missing data values

It will create an association where none really exits

- Impute M datasets (impute missing values)
- Yields M β estimates $\beta_1 \dots \beta_M$
- $\,\circ\,$ Final β estimate is mean of $\beta_1\,...,\,\beta_M$

$$\boldsymbol{\hat{\beta}} = \frac{1}{M} \sum_{j=1}^{M} \boldsymbol{\hat{\beta}}^{(j)}$$

45

Multiple Imputati	on
Journal of Statistical Software December 2011, Volume 45, Issue 6. http://www.jstatsoft.org/	Journal of Statistical Software December 2011, Volume 45, Issue 2. http://www.jstatsoft.org/
Multiple Imputation Using SAS Software	Multiple Imputation with Diagnostics (mi) in R: Opening Windows into the Black Box
	Yu-Sung Su Andrew Gelman

Hot Deck Imputation

Pros

- No distribution assumptions
- Non-parametric
- Less sensitive to model specifications
- Only plausible values imputed
- Better coverage with skewed data

Cons

- More complicated
 - Many macros available
- Can be biased
 - especially with MNAR
 - Not enough donors 1 donor overrepresented

52

Hot Deck Imputation

• Lots of SAS macros and R code available (google is our friend)

• Less complicated (basically matching algorithms) to more complicated

Differ based on

- Methods (previous slide)
- Definition of "similar"
- · Can it take into account multiple covariates
- assumptions

o		ontrol for X_2 i	elated to ar in our analysis		-	or missingness			
o	For contine • Even if m	uous outcon nissingness is m	nes nultiplicative the	e complete ca	ase method yi	he outcome c	nates	E A	
$X_2 = 0$		E=0	$X_2 = 1$	E=1	E=0	$X_2 = 2$	E=1	E=0	1
D=1	$I_{D=01} a_0$	$f_{D=01} c_0$	D=1 D=0	$f_{D=11} = a_1$	$f_{D=11} C_1$ $f_{D=10} * d_1$	D=1 D=0	$f_{D=21} = a_2$	$f_{D=21} C_1$	
D=0	$t_{D=00} \ ^{C}_{0}$	$D_{=00}$							

