

## Ideal World

## - All data sets would be complete

- Everyone will have filled in all the questions correctly
- Everyone will have sent in all their questionnaires
- All blood samples will make their way to the lab in time
- All genotype data will have passed QC processes
- No one will have a diagnosis date before their birth date
- No men would be listed as having been pregnant
- All researchers would have their own biostatistician to work with


## Real World

- All data sets have issues (eh, no one's perfect)
- People skip questions
- Questionnairesare missing
- We run out of blood samples
- We have a QC processfora reason
- Mistakes will happen
- My inbox is overflowing


## Missing data is a fact of life

- How you handle it matters
- Need to considerthe type of missingness
- Different methods yield biased and/or ineffic ient estimates
"All Models are Wrong, but Some are Useful"
- There is no magic bullet
- ...other than a voiding missing data at the design stage
- Be aboveboard about limitations of your approach


## Missing data is a fact of life

- Ignore missing data: "Complete Case analysis"
- Biased \& Ineffic ient in all situations
- Exc eption is for la rge samples sizes a nd very sma ll amounts of missing data
- Still biased and less effic ient but not as notic eable because of sample size
- All altemative approaches have their own strengths and weaknesses
- Dependent on type of missingness


## Missing Data Definitions

| Missing Completely At Random <br> (MCAR) | $\operatorname{Pr}\left(\mathbf{M} \mid \mathbf{X}_{\text {miss }}, \mathbf{X}_{\text {obs }}\right)=\operatorname{Pr}(\mathbf{M})$ |
| :---: | :---: |
| Missing At Random <br> (MAR) | $\operatorname{Pr}\left(\mathbf{M} \mid \mathbf{X}_{\text {miss }}, \mathbf{X}_{\text {obs }}\right)=\operatorname{Pr}\left(\mathbf{M} \mid \mathbf{X}_{\text {obs }}\right)$ |
| Missing <br> Not At Random <br> (MNAR) <br> a.k.a. "non-ignorable" or "informative" $\operatorname{Pr}\left(\mathbf{M} \mid \mathbf{X}_{\text {miss }} \mathbf{X}_{\text {obs }}\right)=\operatorname{Pr}\left(\mathbf{M} \mid \mathbf{X}_{\text {miss }} \mathbf{X}_{\text {obs }}\right)$ |  |

$$
\text { Where } \begin{aligned}
& \mathrm{M}=\text { missing indicator ( } 1=\text { missing, } 0=\text { non-missing }) \\
& X_{\text {miss }}=\text { missing values } \\
& X_{\text {obs }}=\text { observed values }
\end{aligned}
$$

## Missing Completely at Random (MCAR)

- $P(M=1 \mid$ Xobs, Xmiss $)=P(M=1)$
- Probability that $X$ is missing is unrelated to the value of $X$ or any other covariate
- Dropped lab sample
- Storm on day of clinic visit
- 2 pages of a questionna ire stuck together
- More?


## Missing at Random (MAR)

- $P\left(M=1 \mid X_{\text {obs }}, X_{\text {miss }}\right)=P\left(M=1 \mid X_{\text {obs }}\right)$
- Probability that $X_{1}$ is missing is related to an OBSERVED value of another covariate $X_{2}$
- After adjusting for the observed value $X_{2}, X_{1}$ is not associated with $M$
- Age/Income
- Olderage groups more likely to answer income question than younger age groups
- Olderage groupstend to make higher incomes
- So overall average is inflated (if only look at non-missing)
- Within age group. income level not related to missingness
- So can control for age group to deal with missingness


## Missing Not at Random (MNAR)

- $P\left(M=1 \mid X_{o b s}, X_{\text {miss }}\right)=P\left(M=1 \mid X_{o b s^{\prime}} X_{\text {miss }}\right)$
- Probability that $X$ is missing is related to an unknown/missing value
- Heavy drug users are less likely to report theirdrug use than light users
- So heavy users will have more missing values and
- Therefore overall a verage will be deflated
- So probability of missing drug use is related to higherfrequencies of use


## Missing Data

- Type of missing
- MCAR - Missing Completely at Ra ndom
- MAR - Missing at Ra ndom
- MNAR - Missing Not at Random
- There may be different types of missingness in one dataset
- No one method is perfect
- There is no one method that fits every situation
- So now what?

| Method | Advantages | Disadvantages |
| :---: | :---: | :---: |
| Complete case | Easy | Generally biased if data are not MCAR* <br> Inefficient |
| Missing indicator | Easy for one variable <br> A little more efficient | Biased <br> Diffic ult for more than one variable |
| Weighted | Unbiased if data are MAR and missingness model correctly specified <br> Point estimation easy <br> Can be quite efficient** | Estimating standard errors can be difficult Can be inefficient** |
| Single imputation | Easy <br> Can be unbiased in important situations (e.g. under the null) <br> Can be quite efficient** | Generally biased <br> Estimating standard errors can be difficult Can be inefficient** |
| Maximum likelihood | Unbiased if missingness model correctly specified (even for MNAR) Can be more efficient | Very diffic ult to implement |

*Unbiased if missingness probability is "multiplic a tive" [Kleinba um Morgenstem and Kupper (1981)]
**Loss of information depends on how accurately missing data can be predicted given observed data

| Method | Advantages | Disadvantages |
| :--- | :---: | :---: |
| Complete case | Easy | Generally bia sed if data <br> are not MCAR* <br> Inefficient |
| Missing indicator | Easy for one va riable |  |
| A little more efficient |  |  |

[^0]**oss of information depends on how accurately missing data can be predicted given observed data

## Complete Case

- Limit dataset to only those subjects with NO missing data
- Issues with complete case a nalyses
- Decrease sample size
- Waste work, information, time
- In most situations, this is bia sed


## Complete Case

-"But we will only be dropping a few, what's the big deal?"

- A few here, a few there addsup fast.
- In studies with lots of cova riates... lets think
- If we were missing only $0.5 \%$ of each $X$ (uncorelated)
- 1 outcome, 4 markers $\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$
- We would expect to be missing $1.9 \%$ of our data
- 1 outcome, 100 markers ( $0.5 \%$ missing each)
- We would expect to be missing $39 \%$ of our data


## Complete Case

- MCAR - Missingness unrelated to any known or unknown va ria ble
- Unbiased
- Loss of efficiency, especially in cases of large missingness
- MAR - Missing related to a measured variable
- If related only to disease and/or exposure - as long as missingness is multiplic ative then unbiased
- If related to some measured covariate, adjusting for covariate should elevate any most bias
- Lose efficiency in all cases
- MNAR - Missing related to some unmeasured/unknown or a measured but missing variable
- Complete Case a nalysis will produce biased results!


## Dementia and Memory Loss in HIV

- Idea I World: I created this dataset with $n=1000$ people (reality)
- Real Word: I used this 'reality' dataset to make 3 'real' datasets with missingness
- MCAR - missingness is not associated with anything
- MAR - missingness is a ssoc iated with age
- MNAR - missingness is associated with an unknown variable
- Collect information on
- Score on memory test (continuous: higher is better)
- Age (continuous)
- Clinic
- Size of household (continuous)
- Model: Linear Regression
- Memory Score =size_hh + age + clinic


## Reality ( $n=1000$ )

```
> model1 <- lm(ful1$score ~ ful1$size_hh + ful1$age + ful1$clinicf)
> summary(model1)
Ca11:
1m(formula = ful1$score ~ ful1$size_hh + ful1$age + ful1$clinicf)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-26.6101 & -5.4566 & -0.1408 & 5.1860 & 22.4898
\end{tabular}
Coefficients:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Estimate & Std. Error & ue & 1) & \\
\hline (Intercept) & 62.83261 & 3.57477 & 17.577 & < \(2 \mathrm{e}-16\) & \\
\hline ful1\$size_hh & 0.47718 & 0.12041 & 3.963 & 7.93e-05 & *** \\
\hline fu11\$age & -0.32426 & 0.04877 & -6.649 & 4.87e-11 & \\
\hline full\$clinicfclinic 2 & -1.29629 & 0.69192 & -1.873 & 0.061297 & \\
\hline full\$clinicfclinic & -2.38112 & 0.63911 & -3.726 & 0.00020 & \\
\hline
\end{tabular}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.963 on 995 degrees of freedom
Multiple R-squared: 0.1217, Adjusted R-squared: 0.1182
F-statistic: 34.46 on 4 and 995 DF, p-value: < 2.2e-16
```


## Complete Case analysis

|  | Reality $(\mathrm{n}=1000)$ |  | MCAR |  | MAR |  | MNAR |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Beta (SE) | p-value |
| Size_hh | $0.48(0.12)$ | $10^{-5}$ |  |  |  |  |  |  |
| Age | $-0.32(0.05)$ | $10^{-11}$ |  |  |  |  |  |  |
| Clinic 1 | 1.0 |  |  |  |  |  |  |  |
| Clinic 2 | $-1.29(0.69)$ | 0.06 |  |  |  |  |  |  |
| Clinic 3 | $-2.38(0.64)$ | 0.0002 |  |  |  |  |  |  |

## MCAR ( $n=553$ )

```
```

> modelMCAR <- Im(MCARSscore ~ MCARSsize_hh + MCARSage + MCARSClinicf)

```
```

> modelMCAR <- Im(MCARSscore ~ MCARSsize_hh + MCARSage + MCARSClinicf)
> summary (modelMCAR)
> summary (modelMCAR)
Ca11:

```
Ca11:
```

| Min | $1 Q$ | Median | 30 | Max |
| ---: | ---: | ---: | ---: | ---: |
| -26.5155 | -5.4784 | -0.2174 | 5.1320 | 22.4442 |

```
1m(formula = MCAR$score ~ MCAR$size_hh + MCAR$age + MCAR$clinicf)
```

1m(formula = MCAR$score ~ MCAR$size_hh + MCAR$age + MCAR$clinicf)
Residuals:
Residuals:
Coefficients:

```
Coefficients:
```




```
MCAR$size_hh 0.47424 0.16737 2.833 0.00477 #*
```

MCAR\$size_hh 0.47424 0.16737 2.833 0.00477 \#*
MCARSage _lllllll
MCARSage _lllllll
MCARSclinicfclinic 2 -1.12189 0.95792 -1.171 0.24204
MCARSclinicfclinic 2 -1.12189 0.95792 -1.171 0.24204
MCARSClinicfclinic 3-2.64161 0.85610 -3.086 0.00213 \#*
MCARSClinicfclinic 3-2.64161 0.85610 -3.086 0.00213 \#*
Signif. codes: 0 '\#\#\#’ 0.001 ‘*\#’ 0.01 '^’ 0.05 '.' 0.1 ' ' 1
Signif. codes: 0 '\#\#\#’ 0.001 ‘*\#’ 0.01 '^’ 0.05 '.' 0.1 ' ' 1
Residual standard error: 8.106 on 548 degrees of freedom
Residual standard error: 8.106 on 548 degrees of freedom
(447 observations deleted due to missingness)
(447 observations deleted due to missingness)
Multiple R-squared: 0.1199, Adjusted R-squared: 0.1135
Multiple R-squared: 0.1199, Adjusted R-squared: 0.1135
F-statistic: 18.67 on 4 and 548 DF, p-value: 2.124e-14

```
F-statistic: 18.67 on 4 and 548 DF, p-value: 2.124e-14
```

\# Missing

- size_hh (351)
- Age (148)
- Clinic (0)
\# missing at least 1
variable $=447$ (45\%)
\# with complete
data $=553$ (55\%)


## Complete Case analysis

|  | Reality ( $n=1000$ ) |  | MCAR ( $\mathrm{n}=553$ ) |  | MAR |  | MNAR |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Beta (SE) | p -value | Beta (SE) | p-value | Beta (SE) | $p$-value | Beta (SE) | $p$-value |
| Size_hh | 0.48 (0.12) | $10^{-5}$ | 0.47 (0.17) | 0.005 |  |  |  |  |
| Age | -0.32 (0.05) | $10^{-11}$ | -0.30 (0.07) | $10^{-6}$ |  |  |  |  |
| Clinic 1 | 1.0 |  | 1.0 |  |  |  |  |  |
| Clinic 2 | -1.29 (0.69) | 0.06 | -1.12 (0.96) | 0.24 |  |  |  |  |
| Clinic 3 | -2.38 (0.64) | 0.0002 | -2.64 (0.86) | 0.002 |  |  |  |  |
| Notice: <br> - Betas are pretty close to reality <br> - SEs are larger <br> - p-values less signific a nt |  |  |  |  |  |  |  |  |

```
MAR (n=638)
# Missing
- size_hh (362)
# with complete
data =638(64%)
```

```
> mode7MAR <- 7m(MAR$score ~ MAR$size_hh + MAR$age + MAR$ćlinicf)
```

> mode7MAR <- 7m(MAR$score ~ MAR$size_hh + MAR$age + MAR$ćlinicf)
> summary (modelMAR)
> summary (modelMAR)
Ca11:
Ca11:
1m(formula = MAR$score ~ MAR$size_hh + MAR$age + MAR$clinicf)
1m(formula = MAR$score ~ MAR$size_hh + MAR$age + MAR$clinicf)

| Min | $1 Q$ | Median | $3 Q$ | Max |
| ---: | ---: | ---: | ---: | ---: |
| -27.273 | -5.691 | -0.031 | 5.340 | 22.202 |


|  | Estimate | Std. Error | t value | $\operatorname{Pr}(>\|t\|)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (Intercept) | 63.64856 | 4.58087 | 13.894 | < 2e-16 | *** |
| MAR\$size_hh | 0.52447 | 0.15479 | 3.388 | 0.000747 | *** |
| MAR\$age | -0.35122 | 0.06327 | -5.551 | 4.18e-08 | *** |
| MAR\$clinicfclinic 2 | -1.51119 | 0.89527 | -1.688 | 0.091907 |  |
| MAR\$clinicfclinic 3 | -1.86610 | 0.83169 | -2.244 | 0.025193 | * |

```
Residuals:
```

Residuals:
Coefficients:
Coefficients:
signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 8.2 on 633 degrees of freedom
Residual standard error: 8.2 on 633 degrees of freedom
(362 observations deleted due to missingness)
(362 observations deleted due to missingness)
multiple R-squared: 0.1247, Adjusted R-squared: 0.1192
multiple R-squared: 0.1247, Adjusted R-squared: 0.1192
F-statistic: 22.55 on 4 and 633 DF, p-value: < 2.2e-16

```
F-statistic: 22.55 on 4 and 633 DF, p-value: < 2.2e-16
```


## Complete Case a nalysis

|  | Reality ( $\mathrm{n}=1000$ ) |  | MCAR ( $\mathrm{n}=553$ ) |  | MAR ( $\mathrm{n}=638$ ) |  | MNAR |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Beta (SE) | p-value | Beta (SE) | p -value | Beta (SE) | p -value | Beta (SE) | $p$-value |
| Size_hh | 0.48 (0.12) | $10^{-5}$ | 0.47 (0.17) | 0.005 | 0.53 (0.15) | 0.0007 |  |  |
| Age | -0.32 (0.05) | $10^{-11}$ | -0.30 (0.07) | $10^{-6}$ | -0.35 (0.06) | $10^{-8}$ |  |  |
| Clinic 1 | 1.0 |  | 1.0 |  | 1.0 |  |  |  |
| Clinic 2 | -1.29 (0.69) | 0.06 | -1.12 (0.96) | 0.24 | -1.51 (0.90) | 0.09 |  |  |
| Clinic 3 | -2.38 (0.64) | 0.0002 | -2.64 (0.86) | 0.002 | -1.87 (0.83) | 0.03 |  |  |
|  | Notice: <br> - Betas are pretty close-ish to reality* <br> - *missingness is associated with age, so by controlling for age we help alleviate the bias introduced by missingness <br> - SEs are larger <br> - p-values less significant |  |  |  |  |  |  |  |

## MNAR ( $n=890$ )

\# Missing

- size_hh (110)
\# with complete
data $=890$ (89\%)

|  | Estimat | rr | value | t) |
| :---: | :---: | :---: | :---: | :---: |
| (Intercept) | 66.56135 | 3.78372 | 17.591 | < 2e-16 |
| MNAR\$size_hh | 0.31682 | 0.12764 | 2.482 | 0.013241 |
| MNAR\$age | -0.36247 | 0.05193 | -6.979 | 5.81e-12 |
| MNAR\$clinicfclinic | -1.50011 | 0.72933 | -2.057 | 0.039994 |
| MNAR\$clinicfclinic | -2.29868 | 0.67288 | -3.416 | 0.00066 |

```
> mode\MNAR <- 1m(MCAR$score ~ MNAR$size_hh + MNAR$age + MNAR$clinicf)
```

> mode\MNAR <- 1m(MCAR$score ~ MNAR$size_hh + MNAR$age + MNAR$clinicf)
> summary (modelMNAR)
> summary (modelMNAR)
Ca11:
Ca11:
lm(formula = MCAR$score ~ MNAR$size_hh + MNAR$age + MNAR$clinicf)
lm(formula = MCAR$score ~ MNAR$size_hh + MNAR$age + MNAR$clinicf)
Residuals:
Residuals:
Min
Min
-26.4587 -5.5548 -0.0569 5.2132 23.1123
-26.4587 -5.5548 -0.0569 5.2132 23.1123
Coefficients:
Coefficients:
Signif. codes: 0 ‘***' 0.001 ‘**' 0.01 ‘*’ 0.05 '.' 0.1 ' ' 1
Signif. codes: 0 ‘***' 0.001 ‘**' 0.01 ‘*’ 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.922 on 885 degrees of freedom
Residual standard error: 7.922 on 885 degrees of freedom
(110 observations deleted due to missingness)
(110 observations deleted due to missingness)
Multiple R-squared: 0.1193, Adjusted R-squared: 0.1153
Multiple R-squared: 0.1193, Adjusted R-squared: 0.1153
F-statistic: 29.97 on 4 and 885 DF, p-value: < 2.2e-16

```
F-statistic: 29.97 on 4 and 885 DF, p-value: < 2.2e-16
```


## Complete Case a nalysis

|  | Reality $(\mathrm{n}=1000)$ |  | MCAR $(\mathrm{n}=553)$ |  | MAR $(\mathrm{n}=638)$ |  | MNAR ( $\mathrm{n}=890)$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Beta (SE) | p -value |
| Size_hh | $0.48(0.12)$ | $10^{-5}$ | $0.47(0.17)$ | 0.005 | $0.53(0.15)$ | 0.0007 | $0.31(0.13)$ | 0.01 |
| Age | $-0.32(0.05)$ | $10^{-11}$ | $-0.30(0.07)$ | $10^{-6}$ | $-0.35(0.06)$ | $10^{-8}$ | $-0.36(0.05)$ | $10^{-12}$ |
| Clinic 1 | 1.0 |  | 1.0 |  | 1.0 |  | 1.0 |  |
| Clinic 2 | $-1.29(0.69)$ | 0.06 | $-1.12(0.96)$ | 0.24 | $-1.51(0.90)$ | 0.09 | $-1.50(0.73)$ | 0.04 |
| Clinic 3 | $-2.38(0.64)$ | 0.0002 | $-2.64(0.86)$ | 0.002 | $-1.87(0.83)$ | 0.03 | $-2.30(0.67)$ | 0.0007 |

Notice: even with the lease amount of missingness

- Betas are biased forsize_hh
- SEs are similarbecause we are only missing $\sim 10 \%$ of the data
- p-values less signific ant for biased estimates


## Summary

Argumentum ad a ntiquita tem? (proof from tradition)
"But Mom, everyone is doing it!"
-Ok, we get it - Complete Case is bad!

## - Complete Case:

- Only good when little missingness AND
- Missingness is MCAR or MAR (correctly modeled)
- So what can we do?

| Method | Advantages | Disadvantages |
| :--- | :---: | :---: |
|  |  |  |
| Missing indicator | Easy for one categorical variable <br> A little more efficient | Biased <br> Diffic ult for more than <br> one variable |
|  |  |  |
|  |  |  |
|  |  |  |

## Indic ator Method Simple Example

- Outcome: Memory Score
- Exposure: Size of household
- Confounders
- Age (continuous)
- Clinic (categorical)
- In this case only clinic has missing values
- Define clinic as $1 / 2 / 3 /$ missing using dummy variables
- Model: score $=$ size + age $+c 2+c 3+c m$

|  | C2 | C3 | CM |
| :--- | :---: | :---: | :---: |
| C linic 1 | 0 | 0 | 0 |
| C linic 2 | 1 | 0 | 0 |
| C linic 3 | 0 | 1 | 0 |
| missing | 0 | 0 | 1 |

## Indic ator Method

|  | Reality (n=1000) |  | MAR (n=818) <br> Complete Case |  | MAR (n=1000) |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Beta (SE) | p-value | Beta (SE) | $p$-value | Beta (SE) | $p$-value |
| Size_hh | $0.48(0.12)$ | $10^{-5}$ | $0.53(0.13)$ | 0.00007 | $0.46(0.12)$ | 0.0001 |
| Age | $-0.32(0.05)$ | $10^{-11}$ | $-0.30(0.06)$ | $10^{-6}$ | $-0.37(0.05)$ | $10^{-14}$ |
| Clinic 1 | 1.0 |  | 1.0 |  | 1.0 |  |
| Clinic 2 | $-1.29(0.69)$ | 0.06 | $-1.53(0.84)$ | 0.07 | $-1.71(0.83)$ | 0.04 |
| Clinic 3 | $-2.38(0.64)$ | 0.0002 | $-2.33(0.68)$ | 0.001 | $-2.08(0.67)$ | 0.002 |
|  |  |  |  |  | $-0.45(0.80)$ | 0.576 |

## Notice:

- Beta for size_hh is biased when complete case is used
- Including all $n=1000$ with indic ator for missing clinic helps alleviate the bias, but only because it is MAR associated with age (observed)
- MNAR would be biased even with indicator


## Indic ator Method - Issues

## - For multiva riate models

- Indic ator is created for every cova riate, X , with any missing
- Best used with only categorical Xs, but can make a continuous into categorical and then make a group for missing $X$
- Need to be wary
- Look forvariation in the outcome in the missing levelsforeach covariate
- Need at least 1 case and 1 control forevery level
- If not, subjects missing this value must be deleted
- Look for 'perfect' missingness
- groups of variables missing (pregnant men)
- i.e. food frequency questionnaire
- Can use 1 missing indicatorvariable

| Method | Advantages | Disadvantages |
| :--- | :---: | :---: |
|  |  |  |
| Weighted | Unbiased if data are MAR and <br> missingness model correctly spec ified <br> Point estimation easy <br> Can be quite effic ient* | Estimating standard <br> errors can be diffic ult <br> Can be inefficient |
|  |  |  |

*Unbiased if missingness probability is "multiplic ative" [Kleinba um Morgenstem and Kupper (1981)]
${ }^{* *}$ Loss of information depends on how accurately missing data can be predicted given observed data

## Inverse Probability Weighting (IPW)

## - Basic premise

- Given the complete observed dataset
- The sample is re-weighted to recreate the best estimate of the unobserved full \& complete data


## - Simple example

- $Y=$ Outc ome (diagnosis of dementia)
- $\mathrm{X}=$ Exposure (clinic)
- $\mathrm{Z}=$ Confounder/covariate (age)


| Method | Advantages | Disadvantages |
| :---: | :---: | :---: |
| Complete case | Easy | Generally biased if data are not MCAR* Inefficient |
| Missing indicator | Easy for one variable <br> A little more efficient | Biased <br> Diffic ult for more than one variable |
| Weighted | Unbiased if data are MAR and missingness model correctly spec ified <br> Point estimation easy <br> Can be quite efficient** | Estimating standard entors can be difficult Can be inefficient** |
| Single imputation | Easy <br> Can be unbiased in important situations (e.g. under the null) <br> Can be quite efficient** | Generally biased Estimating standard errors can be difficult Can be inefficient** |
| Maximum likelihood | Unbiased if missingness model correctly specified (even for MNAR) Can be more effic ient | Very diffic ult to implement |

*Unbiased if missingness probability is "multiplic ative" [Kleinba um Morgenstem and Kupper (1981)]
*Loss of information depends on how accurately missing data can be predicted given observed data

## Imputation and Likelihood

- The literature is HUGE!
- The goal of today is to give an overview
- Examplesand teminology
- Little RJ A a nd Rubin DB (2002) Statistic a I Analysis with Missing Data. Hoboken: Wiley Interscience. Cha pters 1, 3-5.
- Ha rrell FE (2001) Regression Modeling Strategies. New York: Springer. Chapters 3 a nd 8.
- Steyerberg EW (2009) Clinical Prediction Models. New York: Springer. Chapters 7 and 8.
- Greenland S and Finkle WD (1995) A critic a l look at methods for handling missing cova nia tes in epidemiologic regression a nalyses. Am J Epidemiol Dec 15;142(12):1255-64.
- SASPROC MImanual orR "MI" package
- http://www.Ishtm.ac.uk/msu/missing data/biblio.html


## Imputation

## - Concept:

- Replace missing values(covariates) with a value derived from the data
- Selectat random
- Probability (Expected value based on complete data)
- Single imputation
- Impute once
- Analyze as if completed data were observed
- Multiple imputation
- Impute multiple times
- Analyze each imputed data set as if completed data were observed
- Appropriately summa rize results ac ross data sets


## Single Imputation

Observed Data

|  | $d$ | $x 1$ | $x 2$ |
| :--- | :--- | ---: | ---: |
| 1 | 0 | 1.147 | $N A$ |
| 2 | 1 | -0.101 | 0.108 |
| 3 | 1 | 0.308 | $N A$ |
| 4 | 0 | 0.267 | $N A$ |
| 5 | 1 | -1.290 | 1.800 |
| 6 | 1 | 0.662 | 1.091 |
| 7 | 1 | 0.686 | $N A$ |
| 8 | 0 | -0.099 | 1.790 |
| 9 | 0 | 0.850 | 0.548 |
| 10 | 0 | 0.335 | 2.717 |

Completed Data

|  | $d$ | $x 1$ | $x 2$ |
| ---: | ---: | ---: | ---: |
| 1 | 0 | 1.147 | 0.073 |
| 2 | 1 | -0.101 | 0.108 |
| 3 | 1 | 0.308 | 0.366 |
| 4 | 0 | 0.267 | 0.980 |
| 5 | 1 | -1.290 | 1.800 |
| 6 | 1 | 0.662 | 1.091 |
| 7 | 1 | 0.686 | 0.432 |
| 8 | 0 | -0.099 | 1.790 |
| 9 | 0 | 0.850 | 0.548 |
| 10 | 0 | 0.335 | 2.717 |

Results


## Multiple Imputation

Observed Data

|  | $d$ | $x 1$ | $x 2$ |
| ---: | ---: | ---: | ---: |
| 1 | 0 | 1.147 | $N A$ |
| 2 | 1 | -0.101 | 0.108 |
| 3 | 1 | 0.308 | $N A$ |
| 4 | 0 | 0.267 | $N A$ |
| 5 | 1 | -1.290 | 1.800 |
| 6 | 1 | 0.662 | 1.091 |
| 7 | 1 | 0.686 | $N A$ |
| 8 | 0 | -0.099 | 1.790 |
| 9 | 0 | 0.850 | 0.548 |
| 10 | 0 | 0.335 | 2.717 |

Multiple Complete Datasets

Impute Multiple times

|  | d | x1 | $\times 2$ |  | d | x1 | $\times 2$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 1.147 | 1.052 | 1 | 0 | 1.147 | 0.073 |
| 2 | 1 | -0.101 | 0.108 | 2 | 1 | -0.101 | 0.108 |
| 3 | 1 | 0.308 | 0.708 | 3 | 1 | 0.308 | 0.366 |
| 4 | 0 | 0.267 | 5.786 | 4 | 0 | 0.267 | 0.980 |
| 5 | 1 | -1.290 | 1.800 | 5 | 1 | -1.290 | 1.800 |
| 6 | 1 | 0.662 | 1.091 | 6 | 1 | 0.662 | 1.091 |
| 7 | 1 | 0.686 | 0.886 | 7 | 1 | 0.686 | 0.432 |
| 8 | 0 | -0.099 | 1.790 | 8 | 0 | -0.099 | 1.790 |
| 9 | 0 | 0.850 | 0.548 | 9 | 0 | 0.850 | 0. 548 |
| 10 | 0 | 0.335 | 2.717 | 10 | 0 | 0.335 | 2.717 |
|  | d | x1 | $\times 2$ |  | d | x1 | $\times 2$ |
| 1 | 0 | 1.147 | 2.171 | 1 | 0 | 1.147 | 0.171 |
| 2 | 1 | -0.101 | 0.108 | 2 | 1 | -0.101 | 0.108 |
| 3 | 1 | 0.308 | 0.565 | 3 | 1 | 0.308 | 0.567 |
| 4 | 0 | 0.267 | 0.810 | 4 | 0 | 0.267 | 1.220 |
|  | 1 | -1.290 | 1.800 | 5 | 1 | -1.290 | 1.800 |
| 6 | 1 | 0.662 | 1.091 | 6 | 1 | 0.662 | 1.091 |
| 7 | 1 | 0.686 | 0.766 | 7 | 1 | 0.686 | 3.002 |
| 8 | 0 | -0.099 | 1.790 | 8 | 0 | -0.099 | 1.790 |
| 9 | 0 | 0.850 | 0.548 | 9 | 0 | 0.850 | 0.548 |
| 10 | 0 | 0.335 | 2.717 | 10 | - | 0.335 | 2.717 |

Results


## Caveat

"The idea of imputation is both seductive and dangerous. It is seductive because it can lull the user into the pleasurable state of believing the data are complete after all, and it is dangerous because it lumpstogether situations where the problem is suffic iently minor that it can be legitimately handled in this way and situations where standard estimators applied to the realand imputed data have substantial bia ses."

## Single Imputation (4 methods)

- Unconditional Mean
- Conditional Mean
- Unconditional Draw
- Conditional Draw
- Unconditional vs. Unconditional
- Unconditional: Do not use other variablesto 'help' imputation
- Conditional: Use other variablesto 'help' imputation
- Mean vs. Draw
- Mean: Set missing $X$ to the mean of non-missing
- Draw: Set missing $X$ to a random draw from non-missing distribution


## Unconditional mean imputation

- How:
- Find mean of all non-missing values
- Replace all missing values with that mean
- Advantage:

$$
X_{i j}^{\text {(observed) }} \sim N\left(\bar{X}_{j}, s_{j}^{2}\right)
$$

- easy
- Disa dvantage:
- underestimates the amount of va riability in Xj , and
- weakens any associations with the other Xs and the outcome Y.
- It's the missing indic atormethod without the missing indicator


## Unconditional draw imputation

- How:
- Find the mean and SD of all non-missing values
- Take a random sample from a distribution with that mean and SD
- Advantage:
- easy,

$$
X_{i j}^{(\text {observed })} \sim N\left(\bar{X}_{j}, s_{j}^{2}\right)
$$

- a little better at handling variability in Xj
- Disadvantage:
- still underestimates the amount of variability in $X j$, and
- still weakens any associations with the other Xs and the outcome Y.


## Conditional Mean Imputation

- How: Let's say $X_{1}$ has missing values
- Using complete data model: $X_{1}=X_{2}+X_{3}+\ldots+X_{k}$ (do NOToutcome!)
- Using that model, 'predict' all the missing $X_{1} s$
- Repeat for all possible combinations of missingness
- Advantages:

$$
X_{i 3}^{(\text {imputed })}=\hat{\alpha}+\hat{\beta}_{1} X_{i 1}+\hat{\beta}_{2} X_{i 2}
$$

- Ma inta ins efficiency (use all data)
- Good for MCAR and MAR
- Disadvantages:
- Not easy, especially when complic ated pattems of missingness

Important note: this is the one imputation approach where one CANNOTuse outcome to predict missing data values
It will create an association where none really exits

## Conditional Draw Imputation

- How:
- Same asConditional Mean except include a variance term
- This time you are drawing at random from a distribution, rather than selecting the 'predicted' value

$$
X_{i 3}^{(\text {imputed })} \sim N\left(\hat{\alpha}+\hat{\beta} Y_{i}, \hat{S}^{2}\right)
$$

- Advantages:
- Reintroduces variability in the imputed Xs, so less likely to introduce to much bias
- Disa dvantages:
- Not easy, especially when complic ated pattems of missingness


## Multiple Imputation

- So basically:
- Impute $M$ datasets (impute missing values)
- Yields $M$ estimates $\beta_{1} \ldots . \beta_{M}$
- Final $\beta$ estimate is mean of $\beta_{1} \ldots \beta_{M}$

$$
\hat{\beta}=\frac{1}{M} \sum_{j=1}^{M} \hat{\beta}^{(j)}
$$

## Multiple Imputation

So ba sic ally:

- And the variance is.......

$$
\begin{array}{r}
V_{\beta}=\frac{1}{M} \sum_{j=1}^{M} \hat{\sigma}^{2(j)}+\left(1+\frac{1}{M}\right)\left(\frac{1}{M-1} \sum_{j=1}^{M}\left(\hat{\beta}^{(j)}-\hat{\beta}\right)^{2}\right)=A+\left(1+\frac{1}{M}\right) B \\
A=\frac{1}{M} \sum_{j=1}^{M} \hat{\sigma}^{2(j)} \quad B=\left(\frac{1}{M-1} \sum_{j=1}^{M}\left(\hat{\beta}^{(j)}-\hat{\beta}\right)^{2}\right)
\end{array}
$$

## Multiple Imputation

- We want to impute the values for any variable missing in record iusing all the observed data on i
- This gets diffic ult when different people have different missing data pattems-
- e.g. you have to fit different models for $X_{3}$ on $Y, X_{1}, X_{2}$ and $X_{3}$ on $Y, X_{1}$ and $X_{3}$ on $X_{2}$ and $X_{3}$ on $Y$
- Ideally you'd want to fit one model for the joint distribution of all the va riables, using all a vailable data, even the incomplete records
- This is what PROC MI (SAS) and 'mi' package (R) does, although at a price
- it assumes the variables [or some simple transformations of the variables] are multivariate noma lly distributed
- It doesthis via Markov Cha in Monte Carlo methods


## Multiple Imputation

- "Monte Carlo" refers to estimating properties of distribution (mean, va riance, etc.) using repeated draws from the distribution
- Want to know if a coin isfair? Flip it 1,000 times and count the number of heads
- "Markov Cha in" is a clevermethod for sampling from complic ated distributions
- e.g. instead of sampling all missing valuesat once, conditional on observed data, sample just one missing value
- Start with a guess for parameters describing the joint distribution and the missing data values, then randomly update to move to the next link on the chain
- Even though you start drawing values from a distribution that looks very different from the distribution you want, if you've done things right, "eventually" the Kth link will be a draw from the target distribution


## Multiple Imputation



## So farso good

- Some analysis methods to deal with incomplete data
- Weighted Regressions
- Does not replace missing values, just tries to control for it in the analysis step
- Imputation Tec hniques
- Replacesmissing value with "best guess"
- Continuous Measures
- Mean \& draw, conditional \& unconditional
- Single and multiple imputation
- Categorical Variables
- Multiple Imputation
- HotDeck


## Hot Deck Imputation

- Replaces missing value with the value from the most similar person in the dataset
- Recipient - subject with missing value
- Donor - similarsubject with non-missing value
- Donor pool - group of subjects similar to 'recipient'


## Hot Deck Imputation

## Pros

- No distribution assumptions
- Non-parametric
- Less sensitive to model specific ations
- Only plausible values imputed
- Bettercoverage with skewed data


## Cons

- More complic ated
- Many macros available
- Can be biased
- especially with MNAR
- Not enough donors-1 donoroverrepresented


## Hot Deck Imputation

- Replacesmissing value with the value from the most similarperson in the dataset


## - A few options:

- Replace with 1 donor that is most similar
- Replace with a random donor from a donorpool of similar subjects
- Replace with mean (or other summary measure) from donor pool of similar subjects
- Create multiple Hot Deck imputed data sets and then summa rize across datasets


## Hot Deck Imputation

- Lots of SAS macros and R code available (google is our friend)
- Less complic ated (basic ally matching algorithms) to more complicated
- Differ based on
- Methods (previous slide)
- Definition of "simila r"
- Can it take into account multiple covariates
- assumptions


## Hot Deck Imputation

- Lots of SAS macros and R packages available
- MIDAS: A SAS Macro for Multiple Imputation Using Distance-Aided Selection of Donors
$\circ \mathrm{R}:$
- "hot.deck"
- "HotDecklmputation"

Iournal of Statistical Software


MIDAS: A SAS Macro for Multiple Imputation Using Distance-Aided Selection of Donors

## Take Away

- It is easy to take care of missing data at the data collection stage than the data a na lysis stage
- How you deal with it will make a difference in the precision and accuracy of your results
- There are multiple different methods, each with prosand cons
- Analysis stage: Indic ator method \& Weighed regression
- Imputation: replace missing
- "predicted value": conditional, unconditional, single, multiple
- Someone similar. HotDeck



## Complete Case - MCAR

- Assume data are MCAR so
$\circ P\left(X_{1}=\right.$ missing $\left.\mid D, E, X_{1} \ldots X_{k}\right)=P\left(X_{1}=\right.$ missing $)=f$

|  | $E=1$ | $E=0$ |
| ---: | :---: | :---: |
| Case (D=1) | $f^{*} a$ | $f^{*} C$ |
| Control $(D=0)$ | $f^{*} C$ | $f^{*} d$ |

$$
\text { so } O R=\frac{f a * f d}{f c * f b}=\frac{a * d}{b^{*} c}
$$

- So OR is a valid estimate (unbiased)
- However,
- Sa mple size is reduced by (1-f) $\times 100 \%$ and thus
- Efficiency is reduced


## Complete Case - MAR

- Probability that $X_{1}$ is missing is associated with an observed variable
- In this case missingness of $X_{1}$ is associated with disease status
- So, probability of missing values in $\mathrm{X}_{1}$ is different forc ases and controls

$$
\begin{array}{ll}
P\left(X_{1}=\text { missing } \mid D=1, E, X_{1} \ldots X_{k}\right)=f_{D}=1 & \begin{array}{c}
\text { Probability of } \\
\text { missingness for cases }
\end{array} \\
P\left(X_{1}=\text { missing } \mid D=0, E, X_{1} \ldots X_{k}\right)=f_{D}=0 & \begin{array}{c}
\text { Probability of } \\
\text { missingness for oontrols }
\end{array}
\end{array}
$$

## Complete Case - MAR

- Assume data are MAR, related to disease status

|  | $E=1$ | $E=0$ |
| :---: | :---: | :---: |
| Case $(D=1)$ | $f_{D=1} * a$ | $f_{D=1} * c$ |
| Control $(D=0)$ | $f_{D=0} * C$ | $f_{D=0} * d$ |

$$
\text { so } O R=\frac{f_{D=1} a * f_{D=0} d}{f_{D=0} c * f_{D=1} b}=\frac{a * d}{b * c}
$$

- Again OR is a valid estimate (unbiased)
- However,
- Sample size is reduced
- Efficiency is reduced


## Complete Case - MAR

- Assume data are MAR, related to exposure status

|  | $E=1$ | $E=0$ |
| :---: | :---: | :---: |
| Case (D=1) | $g_{\mathrm{E}=1} * a$ | $g_{\mathrm{E}=0} * \mathrm{c}$ |
| Control $(\mathrm{D}=0)$ | $\mathrm{g}_{\mathrm{E}=1} * \mathrm{c}$ | $\mathrm{g}_{\mathrm{E}=0} * \mathrm{~d}$ |
| so $O R=\frac{g_{E=1} a * g_{E=0} d}{g_{E=1} c^{*} g_{E=0} b}=\frac{a * d}{b^{*} c}$ |  |  |

- Again OR is a valid estimate (unbiased)
- However,
- Sample size is reduced
- Efficiency is reduced

$$
P\left(X_{1}=\operatorname{missing} \mid \mathrm{D}, \mathrm{E}=1, \mathrm{X}_{1} \ldots \mathrm{X}_{\mathrm{k}}\right)=\mathrm{g}_{\mathrm{E}=1}
$$

$$
P\left(X_{1}=\text { missing } \mid D, E=0, X_{1} \ldots X_{k}\right)=g_{E=0}
$$

## Complete Case - MAR

- What if missingness is related to a nother covariate, $X_{2}$
- We can control for $X_{2}$ in our a nalysis a nd thus also control for missingness
- This only works if the covariate, $X_{2}$ is not at all associated to the outcome or exposure
- For continuous outcomes
- Even if missingness is multiplic ative the complete case method yields biased estimates

| $X_{2}=0$ | $E=1$ | $E=0$ | $X_{2}=1$ | $E=1$ | $E=0$ | $X_{2}=2$ | $E=1$ | $E=0$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $D=1$ | $f_{D=01} * a_{0}$ | $f_{D=01} * C_{0}$ | $D=1$ | $f_{D=11} * a_{1}$ | $f_{D=11} * C_{1}$ | $D=1$ | $f_{D=21} * a_{2}$ | $f_{D=21} * C_{1}$ |
| $D D=0$ | $f_{D=00} * C_{0}$ | $f_{D=00} * d_{0}$ | $D=0$ | $f_{D=10} * C_{1}$ | $f_{D=10} * d_{1}$ |  | $D=0$ | $f_{D=20} * C_{2}$ |$f_{D=20} * d_{1}$

Take away message: If you can model your missingness you can control for it in your analysis. You will lose effic iency, but your estimates should be unbia sed if modeled correctly

This means your missingness must be expla ined by a n observed variable

## Complete Case ... MNAR

- Probability of missingness is related to some unknown or unobserved value
- Meaning missing depends on outcome, exposure, covariate, effect modifiers...
- A different pattem of missingness that depends on something we do not have information on (we cannot model)

$$
\begin{array}{|r|c|r|}
\hline \text { Case }(\mathrm{D}=1) & \mathrm{f} & \mathrm{E} * \mathrm{a} \\
\text { Control }(\mathrm{D}=0) & \mathrm{f}_{01} * \mathrm{c} & \mathrm{f}_{10} * \mathrm{c} \\
\hline \text { so } O R=\frac{f_{00} * \mathrm{~d}}{} \mathrm{a}^{*} f_{00} d \\
f_{10} c * f_{01} b & =\frac{a d}{b c} * \frac{f_{11} f_{00}}{f_{10} f_{01}} &
\end{array}
$$

This time OR is clearly a biased estimate



[^0]:    *Unbiased if missingness probability is "multiplic ative" [Kleinbaum Morgenstem and Kupper (1981)]

