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Study Motivation - Closing the Retention Gap

Retention in care is a crucial component of Joint United Nations
Programme on HIV/AIDS (UNAIDS) 90-90-90 plan goals.

Ideally: patients repeatedly attend follow-up clinical appointments on time.

Reality: clinic visits may be difficult to make for certain patients.

Key decision: scheduling of follow-up appointments.

Scheduling too frequently or infrequently can lead to retention loss.
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AMPATH Care Program in Western Kenya

The Academic Model Providing Access to Healthcare (AMPATH) care program
treats roughly 150,000 patients with HIV at over 60 urban and rural clinics in
western Kenya.

At AMPATH, single-visit retention rates at
many clinics fluctuate below 90%.

Preliminary analyses show that long-term
retention drops off considerably after initial
enrollment.
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AMRS Data Structure and Notation

AMPATH Medical Record System (AMRS) - longitudinal data on scheduling
times, event times, and patient features.

For each patient, we observe data on k = 1, 2, . . . ,K events.

Visit k = 1, 2, . . . ,K − 1 scheduled for time S̃k and occurred at time Vk .

At visit k = 1, 2, . . . ,K − 1 we record a set of features Lk .

Define relative waiting times and scheduled return times: Sk = S̃k − Vk−1

and Wk = min(Vk ,T ,C )− Vk−1.

Event indicator δk =∈ {−1, 0, 1} for censoring, death, return visit -
respectively.

∆-retention indicator:

Yk(∆) = I (Wk − Sk < ∆, δk = 1)

Available history Hk = (S̄k−1, V̄k−1, L̄k , δ̄k−1 = 1).
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AMRS Data Structure and Notation
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∆-Retention Definitions

Kenyan Ministry of Health (MOH) HIV treatment guidelines describes a
patient as lost to followup (LTFU) “a client who has not turned up or come
back to the clinic for either a clinical visit or refills for more than 90 days
from the last scheduled visit”.

Kenyan MOH guidelines also define a “defaulter” as “a client who has not
turned up for either a clinical visit or refills 7 days after their scheduled
appointment date.”
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Potential Outcomes and Estimands

Define potential waiting time and event type of event k under hypothetical
scheduling decision sk ∈ Sk

W sk
k = min(V sk

k ,T
sk
k ) δskk = I (V sk

k < T sk
k )

Potential retention status: Y sk
k (∆) = I (W sk

k − sk < ∆, δskk = 1)

Relevant Estimands. For some sk , s
′
k ∈ Sk .

Conditional effects:

Ψk (∆; hk ) = P(Y
sk
k (∆) = 1 | Hk = hk )− P(Y

s′k
k (∆) = 1 | Hk = hk )

Marginal effects:

Ψk (∆) =

∫
Hk

P(Y
sk
k (∆) = 1 | hk )− P(Y

s′k
k (∆) = 1 | hk )dFk (hk )

Optimization:
s∗k (∆) = argmax

sk∈Sk
P(Y

sk
k (∆) = 1 | Hk = hk )

Prediction: for some new Hk = hk ,

P(Yk (∆) = 1 | Sk = sk ,Hk = hk )
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Estimation is challenging

f ∗(w sk
k , δ

sk
k = j | Hk = hk)

for j ∈ {0, 1}. Estimands are functionals of the joint distribution of potential
outcomes

Challenges:

Counfounding: Followup frequency is like driven by factors also related to
retention (e.g. travel time from clinic, CD4 count, etc.)

Complex return time distributions: clumping around the scheduling visit
time, censoring, visit process terminated by death.
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Estimation is challenging
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Identification Assumptions

Recall: Hk = (S̄k , V̄k−1, δ̄k−1 = 0)

1 Conditionally ignorable scheduling

W sk
k , δ

sk
k ⊥ Sk | S̄k−1, V̄k−1, L̄k , δ̄k−1 = 1

2 Positivity for each sk ∈ Sk

P(Sk = sk | S̄k−1, V̄k−1, , L̄k , δ̄k−1 = 1) > 0

3 Non-informative censoring

lim
dw→0

P(wk ≤Wk < wk + dw , δk = −1 |Wk > wk ,Hk = hk ,V
sk
k ,T

sk
k )

dw

= lim
dw→0

P(wk ≤Wk < wk + dw , δk = −1 |Wk > wk ,H = hk )

dw

Other assumptions: SUTVA, censoring positivity.
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Observed data models

Under previous assumptions, joint distribution of potential outcomes can be
expressed in terms of observed data cause-specific hazards,

f ∗(w sk
k , δ

sk
k = j | Hk = hk) = f (wk , δk = j | Sk = sk ,Hk = hk)

= λj(wk | sk , hk) exp
(
−
∫ wk

0

∑
j∈{0,1}

λj(u | sk , hk)du
)

Requires modeling cause-specific hazards λj(wk | sk , hk).
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Identification Assumptions - Missing Features

In medical records, features may be inconsistently recorded across subjects so that
some elements of Lk = (L1k , L2k , . . . , Lpk) are missing.

Define monitoring indicators: Mk = (M1k ,M2k , . . . ,M1k).

Observed covariates from visit k : LO,Mk

k = Lk ·Mk

Observed history: (L̄O,M̄k

k , M̄k).

Assumptions must be modified, e.g. modified ignorability

W sk
k , δ

sk
k ⊥ Sk | S̄k−1, V̄k−1, L̄

O,m̄k

k , M̄k = m̄k , δ̄k−1 = 1

For full flexibility, should stratify waiting time models by Sk and monitoring
pattern M̄k .
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Bayesian Semi-parametric Hazard Models

Stratified proportional hazard models

λj(wk | sk , hk) = λjsk0(wk) exp(gj,sk (hk))

E.g., gj,sk (hk ;βj,sk ) = L̄′kβ1,j,sk + β2,j,sk (
∑3

h=1 I (Vk−h − Sk−h < ∆)) where
βj,sk = (β1,j,sk , β2,j,sk ).

Piecewise baseline hazard specification

λjsk0(wk ; θj,sk ) =
U∑

u=1

I (wk ∈ I jsku )θu,j,sk

Where {I jsku }Uu=1 is a partition of [0,maxWk ] into U equally-sized intervals
and θj,sk = {θu,j,sk}Uu .
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Autoregressive Smoothing Prior

{Xu}Uu=1 ∼ LNAR1(ρ, η, σ) with initial condition logX1 = η + σε1 and transition
relation for u = 2, 3, . . . ,K

logXu = η(1− ρ) + ρ logXu−1 + σεu

where 0 ≤ ρ < 1, −∞ < η <∞, and σ > 0 are the hyperparameters of the
process and εu are i.i.d. N(0, 1) random variables.

Prior mean process: E [logXu] = η

Prior covariance process: Corr(logXu, logXu−v ) = ρv

We place separate priors on the baseline hazard rates:

{θu,j,sk}Uu=1 ∼ LNAR1(ρj,sk , ηj,sk , σj,sk )
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Posterior Causal Estimation via Monte Carlo

We use standard Markov Chain Monte Carlo (MCMC) methods to obtain
posterior draws of baseline hazard rates {θu,j,sk} and covariate effects βj,sk for
each sk ∈ Sk an j ∈ {0, 1}.

For each subject i simulate b = 1, 2, . . . ,B events,

V
(b)
k ∼ λ1(wk | sk , hik ; θ1,sk , β1,sk )

T
(b)
k ∼ λ0(wk | sk , hik ; θ0,sk , β0,sk )

Set W
(b)
k = min(V

(b)
k ,T

(b)
k ) and δ

(b)
k = I (V

(b)
k < T

(b)
k )

P(Y sk
k (∆) = 1 | Hk = hik) ≈ 1

B

B∑
b=1

I (W
(b)
k − sk < ∆, δ

(b)
k = 1)

Repeat for each posterior draw to obtain draws of P(Y sk
k (∆) = 1 | Hk = hik).
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Alternative Approaches

Alternatively, we can fit stratified models for Yk(∆) directly:

P(Yk(∆) = 1 | Sk = sk ,Hk = hk) = g−1(fsk (hk))

E.g. BART fsk (hk) =
∑R

r=1 fr ,sk (hk ; Tr ,sk ).

E.g. Logistic regression fsk (hk) = h′kβsk .

Upsides:

Simple to implement.

Uncertainty estimation is easy with Bayesian models.

Downsides:

Must re-train model for new ∆ values.

Information loss.
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Predictive Performance Under Censoring

Low Censoring High Censoring
BayesHaz BART Logistic BayesHaz BART Logistic

No Missing Features .70 .65 .65 .67 .56 .56
Missing Features .64 .56 .59 .61 .53 .55

Table: Area under the curve (AUCs) of predicted engagement probabilities in held
out test set under various covariate missingness/censoring scenarios.
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Analyses of First Return in AMPATH

k = 1. Data cut with N ≈ 74, 000 patients at initial enrollment visit scheduled to
return at either 2, 4, 8, or 12 weeks later.

85% return for subsequent visit.

Covariate information on: sex, age, ARV assignment, CD4, travel time.

CD4 (33%) and travel time (45%) have high rates of missingness.
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Bayesian Hazard Estimation

Posterior Inference for λjsk0(wk) using AMPATH data with j = 1 and k = 1 and
sk ∈ {2, 4, 8}.
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Predictive Assessments

Out-of-sample AUCs fairly similar with with BART (fully nonparametric) -
≈ 66%.
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Summary

Generative modeling - single set of models for several estimands at once.

Priors provide useful, tailored regularization.

Bayesian methods provide full inference for all functionals.

Can be more efficient use of granular data relative to off-the-shelf
alternatives.
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